
Introduction

Welcome to the IO Extension! I have spent hundreds of hours writing this library and believe it

offers some very useful and interesting features that will help you, the programmer, to use Small Basic

beyond its limited scope and develop rich, robust applications.

Getting started

To get started using the IO Extension, let’s install the extension. Follow all the directions in the

Prerequisites folder then copy IOExtension.DLL and IOExtension.XML into the “C:\Program

Files (x86)\Microsoft\Small Basic\lib” folder (or “C:\Program Files\Microsoft\Small Basic” if you are on a

32-bit system) (also, replace “C:\” with the drive letter of your main hard disk if “C” is not the correct

letter). If administrative permissions are necessary, type in the appropriate credentials and continue

with the copy operation.

Once the copy is done, open Microsoft Small Basic. Verify that the method group “IOForms” is

present by typing it into the code window and ensuring it appears in the IntelliSense wheel. If the

method group is not present, close Small Basic, re-copy the files, then open Small Basic again. If the

problem persists, please email me at gungan37@gmail.com or post on the Small Basic forums for

assistance.

Now, type in the following code in the code editor:

IOForms.Setup()
IOForms.InitializeForm()

 You should now see a blank window appear. Congratulations, you have successfully installed the

IO Extension and are ready to make some cool programs! Let’s add some things to the window. Now,

modify the code to look like this:

IOForms.Setup()
IOForms.AddButton("Button1", "Hello, World!", "", 10, 10, 100,

50)
IOForms.InitializeForm()

Now, a window with a button appear. Let’s take a look at what each parameter does:

1) "Button1": this is the internal name of the control. This is the name you will use when

programmatically addressing the control

2) "Hello, World!": this is the text to display on the button

3) "": this is the path of the image to display on the button. Since we are only displaying text,

we left this blank

4) 10: this is the distance, in pixels, from the top of the window to the top of the control

5) 10: this is the distance, in pixels, from the left side of the control to the left side of the

control

mailto:gungan37@gmail.com

6) 100: this is the width of the control in pixels

7) 50: this is the height of the control, in pixels

Don’t let all these parameters scare you! They add a lot of functionality that you will (if you

don’t already) really want. Feel free to experiment with these parameters and see what you can do.

Now, we will add an event when the button is clicked. Modify the code in your code editor to

look like this:

IOForms.Setup()
IOForms.AddButton("Button1", "Hello, World!", "", 10, 10, 100, 50)
IOForms.OnButtonClick=ButtonClick
IOForms.InitializeForm()

Sub ButtonClick
 If IOForms.LastButtonClicked="Button1" Then
 IOForms.ShowMessage("Button1 was clicked", "Event fired!", "OK",
"Information", "Button1")
 EndIf
EndSub

All we did was add connect the subroutine ButtonClick to the

IOForms.OnButtonClick event. In that subroutine, we checked that our button was the one that

was clicked (this actually only necessary when more than one button is used), then showed a dialog

stating the button was clicked. (If you are curious about IOForms.ShowMessage, check out its

IntelliSense documentation.

Now, you should be ready to play with other controls! They all follow the common parameter

pattern we just used. All methods to add controls start with “IOForms.Add…” and all events begin

with “IOForms.On…”, and all methods to modify controls start with that control’s name (for example,

the method to change a TextBox’s text is IOForms.TextBoxSetText).

More fun!

 There is much more to the IO Extension that IOForms! Check out the Samples folder for good

samples of these features. Here is a complete listing of what method groups can do what:

 IOAlgorithms allows you to sort numbers, calculate a password’s strength, or calculate the

value of the mathematic constant pi to a specified number of digits

 IOClock allows you to get data from the system clock beyond what the Clock method

group can do

 IOFile allows you to preform file operations beyond what the File method group can do

(such as FileSystemWatcher events)

 IOForms allows you use (one or more) Windows Forms, 24 different controls such as

ListViews, TreeViews and CommandLinks, use Office-2007-style Ribbons, and use

Windows common dialog boxes and preform advanced tasks such as listening to the window’s

message pump

 IOGameControllers allows you any type of game controller in Small Basic

 IOPrinter allows you use printers in Small Basic

 IOSensors allows you use sensors (requires Windows 7 or higher) in Small Basic (but is

untested since my PC has no sensors) and to use the Google Maps API, such as getting Street

View or Map imagery, geocoding or reverse geocoding, looking up elevation for points, getting

directions to anywhere, and getting maps showing the routes of directions.

 IOSpeech allows you to synthesize speech with a variety of parameters

 IOTCPServer and IOTCPClient allow you to send messages between a server and a

client (much like NetworkServer and NetworkClient in Oskariok’s Data Extension)

 IOTimers allows you to create, manipulate (and remove) as many timers as you need

Known issues

 IOAero.ExpandGlass() does not correctly use margin values in Windows 8, so some
experimenting is necessary to get the margins correct. This bug is possibly due to the fact that
the VistaBridge library is designed for Windows Vista and has problems with current versions of
DWM (Desktop Window Manager) that are shipped with Windows 7/8.

 When collapsed to the point of becoming an Overflow tab, RibbonTabs do not expand

correctly when their drop-down arrow is clicked. To work around this issue, set the

WindowMinWidth of the form to a value at which the ribbon is fully expanded.

 WebBrowser controls require form UI threads to be STA (serial-threaded apartments) since

ActiveX controls require STA, so when they are added to a form before it is initialized, they are

added to a custom object called a WebBrowserQueue in which they are stored until the form is

initialized. Upon initialization, a new thread is created in which all the objects in the queue are

converted into controls on the form and the window is initialized as an STA Thread.

Notes

 Some features of the extension are hidden from the Intellisense system of Small Basic. Among

the useful features that have been hidden (to prevent confusion) are:

 In IOForms, you can use AddWindow(Primitive WindowName) to add a window to the program,

use WindowSelector to set all calls to go to that window, then use ShowWindow(Primitive

WindowName) or ShowWindowAsDialog(Primitive WindowName) to show the window. You can

change the selector property “MainForm” to direct calls back to the main form.

 IOShapes and certain features of IOAero are hidden from Intellisense. They are works in

progress. Please, please do not use them! One such method contains a security vulnerability. I

will remove the [HideFromIntellisense] attribute when they are ready for use.

